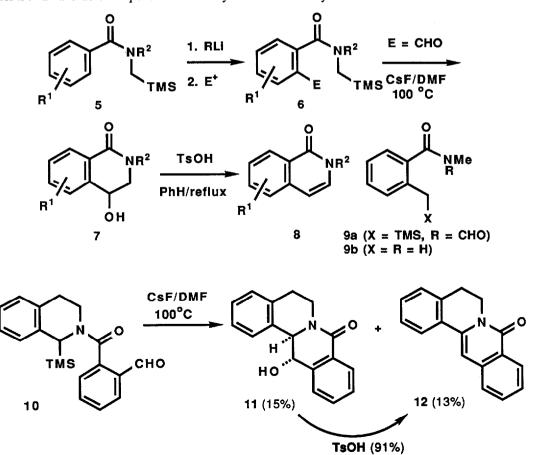
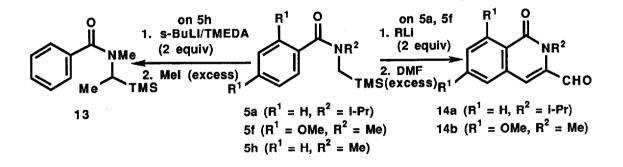
α-SILYLATED TERTIARY BENZAMIDES AS DUAL ORTHO- AND α-CARBANION SYNTHONS. CARBODESILYLATIVE ROUTES TO ISOQUINOLINE AND DIBENZOQUINOLIZIDINE DERIVATIVES

J.-C. Cuevas[#] and V. Snieckus^{*}


Guelph-Waterloo Centre for Graduate Work in Chemistry University of Waterloo, Waterloo, Ontario Canada N2L 3G1

Summary: α -Silylated benzamides 4a display both ortho (6)- and α -carbanion (5h, 15) reactivities which are translated into new synthetic routes for isoquinoline (8, 18, 19) and protoberberine (11, 12) derivatives.

Dipole-stabilized carbanions have emerged as promising synthetic intermediates for umpolung amine functionalization.¹ For α '-amide carbanions (1), utility is at times compromised by low kinetic acidity of the α -hydrogens, dimerization of 1 with its precursor, and severe conditions for hydrolysis of the necessarily highly hindered amide to achieve a general amine synthesis. Katritzky and Sengupta have recently introduced a silylated equivalent (2) of 1 by demonstrating the fluoride-mediated hydroxyalkylation and acylation of the silylated 2-pyridone 3a with aldehydes and acid chlorides to give derivatives 3b, 3c.² In the course of efforts to circumvent the refractory nature of the N,N-diethylamide to hydrolysis and thereby enhance its synthetic utility in directed ortho metalation chemistry,³ we prepared the new silylated benzamides 4a, 4b. In this Letter, we demonstrate the dual ortho metalation and α '-carbanion reactivities of 4a. These properties form the basis of new routes to isoquinolones, 4-aryl tetrahydroisoquinolines and dibenzoquinolizidines by intra-and inter-molecular carbodesilylative hydroxyalkylation processes. In the accompanying Letter,⁴ we describe parallel studies with 4b leading to other heterocycles and define functional group interconversions of this masked dimethylamide. Together, these results broaden and diversify the scope of the original concept² and suggest new methods for heteroannelation formulated on regiospecific directed ortho metalation tactics.


Metalation (sec-BuLi/TMEDA/THF/-78°C/1 h) of 5, $R^1 = H$, $R^2 = Me^5$ followed by DMF quench led only to the self-condensation product 6, $R^1 = H$, $R^2 = Me$, E = COPh (70%) thus paralleling results obtained in the LiTMP deprotonation of N,N'-dimethylbenzamide.⁶ The advantageous effect of increasing the bulk at the amide carbonyl was seen from metalation of 5a under the same conditions which furnished, after DMF treatment, the ortho-formyl product 6a in good yield (Table).⁷ Similarly, the preparation of the methoxy (6b-c) and phenyl (6d) substituted derivatives was achieved from 5b-c and 5d respectively. Substituted benzamides 5e-g were converted into aldehydes 6e-g using t-BuLi/TMEDA/THF/-100 °C/1 h; DMF conditions. Treatment of these products with anhydrous CsF in DMF at 90°C afforded the hydroxy dihydroquinolones 7a-g which were spectroscopically characterized and directly subjected to p-toluensulfonic acid-catalyzed dehydration to give the isoquinolones 8a-g. To illustrate potential for extension to more condensed heterocycles, compound 10, prepared by benzylic silylation (LiTMP/TMSCl),⁴ was similarly treated to give 11 and 12 which represent the protoberberine alkaloid skeleton.⁸ In a variation of this carbodesilylative cyclization, imide 9a⁹ was subjected to the CsF/DMF conditions to yield 8, $R^1 = H$, $R^2 =$ Me and 9b (1:2, 63%), an indication that, presumably because of the less reactive formyl group, the desired process is in unfavorable competition with desilvlation and deformylation.

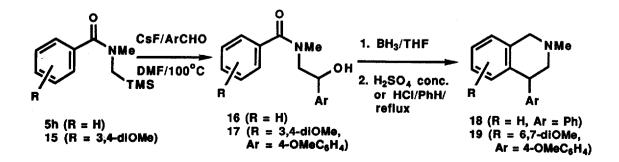

	Substrate 5	5	P	Product 6 (E = CHO)				Product 8			
	R ¹	R ²		R ¹	R ²	Yield,	%		R ¹	R ²	Yield, % (mp, °C)
5a	Н	i-Pr	6a	Н	i-Pr	62		8a.	н	i-Pr	71 (104-105)
5b	3-OMe	i-Pr	6b	3-OMe	i-Pr	33		8b	5-OMe	i-Pr	68 (oil)
5c	4-OMe	i-Pr	6c	4-OMe	i-Pr	64		8c	6-OMe	i-Pr	77 (109-110)
5d	2-Ph	i-Pr	6d	6-Ph	i-Pr	55		8d	8-Ph	i-Pr	92 (115-116)
5e	2-OMe	Me	6e	6-OMe	Me	65		8e	8-OMe	Me	70 (105-106)
5f	2,4-diOMe	Me	6 f	4,6-diOMe	Me	30		8f	6,8-diOMe	Me	78 (100-101)
5g		Me	6g	6-Cl	Me	24		8g	8-CI	Me	84 (93-94)

Table. Directed Metalation-Carbodesilylation Route to Isoquinolones.

Treatment of **5h** with 2 equiv of *sec*-BuLi/TMEDA followed by excess MeI quench gave 13 (18%) in addition to **6**, $\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^2 = \mathbb{M}e$, $\mathbb{E} = \mathbb{COPh}$ (32%). Applications of these conditions on **5a** but using DMF as the electrophile furnished the 3-formyl isoquinolone 14a (40%) together with **6a** (10%). Similarly, **5f** gave the 6,8-dimethoxy analogue 14b (49%). This preliminary evidence for formation of ortho, α -dilithiated species may also have synthetic value.

To show utility of the intermolecular carbodesilylation reaction, 5h and 15 were converted into the amide carbinols 16^{10} (76%) and 17 (25%) which upon diborane reduction and acid-catalyzed cyclization furnished 18 and the dimethyl ether of the 4-arylisoquinoline alkaloid, cherylline (19)^{8a} (15% overall yield).

This work establishes the dual ortho- and α -carbanion reactivities of 4a and illustrates, by intra- and inter-molecular carbodesilylation pathways, its value for isoquinoline ring construction. Advantages over known methods¹¹ for the preparation of specifically substituted isoquinolines are derived from the regiospecific nature of the directed ortho metalation process. These and the complimentary results on 4b,⁴ which include mild conditions for manipulation of desilylated dimethylbenzamides into other useful functionality, are promising indications of α -silylated benzamide potential in modern aromatic chemistry.^{12,13}

References and Footnotes

[#]NATO Postdoctoral Fellow, 1987-89.

- Beak, P.; Zajdel, W.J.; Reitz, D.B. <u>Chem. Rev.</u> 1984, <u>84</u>, 471. For leading references to synthetic and mechanistic studies, see Rein, K.; Goicoechea-Pappas, M.; Anklekar, T.V.; Hart, G.C.; Smith, G.A.; Gawley, R.E. <u>J. Am. Chem. Soc.</u> 1989, <u>111</u>, 2211 and Hay, D.R.; Song, Z.; Smith, S.G.; Beak, P. <u>ibid</u>, 1988, <u>110</u>, 8145.
- Katritzky, A.R.; Sengupta, S. <u>Tetrahedron Lett.</u> 1987, 28, 5419. See also Shimizu, S.; Ogata, M. <u>J. Org.</u> <u>Chem.</u> 1988, 53, 5160.
- 3. Snieckus, V. Bull. Soc. Chim. Fr. 1988 (II), 67; Beak, P.; Snieckus, V. Acc. Chem. Res. 1982, 15, 306.
- 4. Cuevas, J.-C.; Patil, P.; Snieckus, V. <u>Tetrahedron Lett.</u> following communication.
- 5. Compounds **5a-h** were prepared by treatment of the appropriate secondary amide with chloromethyltrimethyl silane under NaH/DMF/RT conditions.
- 6. Beak, P.; Brubaker, G.R.; Farney, R.F. J. Am. Chem. Soc. 1976, <u>98</u>, 3621. See also, Beak, P.; Brown, R.A. J. Org. Chem. 1982, <u>47</u>, 34.
- 7. Other electrophiles can also be incorporated, e.g. 6, $R^1 = H$, E = D(MeOD) (92%) and Me (MeI) (94%).
- a) Shamma, M.; Moniot, J.L. <u>Isoquinoline Alkaloids Research 1972-1977</u>; Plenum Press: New York, 1978. b) For an alternative route involving fluoride-induced intramolecular benzylic silane-imminium salt carbodesilylation, see Takano, S.; Numata, H.; Ogasawara, K. <u>Heterocycles</u> 1983, <u>20</u>, 117.
- 9. Prepared from the corresponding acid chloride (Chenard, B.L.; Slapak, C.; Anderson, D.K.; Swenton, J.S. J.C.S., Chem. Commun, 1981, 179) by treatment with methyl formamide (NaH/THF/RT).
- 10. This reaction was first achieved by Katritzky and Sengupta (ref 2, footnote 16 and Sengupta, S. personal communication).
- 11. Grethe, G. Chem. Heterocyclic Compds. 1981, 38, 1.
- 12. All new compounds show analytical and spectral (IR, ¹H NMR, MS) data in consonance with their assigned structures. Reported yields are of isolated (chromatographed) materials.
- 13. We are indebted to Professor A.R. Katritzky and Dr. S. Sengupta for a preprint of ref 2, correspondence and stimulation of our efforts. We are grateful to R.J. Mills for initial studies and to NSERC, Merck Frosst Canada, and NATO (J.-C.C.) for financial support.

(Received in USA 7 July 1989)